Правила устройства электроустановок - Безопасность. Учебный центр. Лаборатория.

Правила устройства электроустановок (ПУЭ). 7 издание

 

!-- -->

 

1.1.5. Электропомещения — помещения или отгороженные (например, сетками) части помещения, в которых расположено электрооборудование, доступное только для квалифицированного обслуживающего персонала.

1.1.6. Сухие помещения — помещения, в которых относительная влажность воздуха не превышает 60%.
При отсутствии в таких помещениях условий, указанных в 1.1.10-1.1.12, они называются нормальными.

1.1.7. Влажные помещения — помещения, в которых относительная влажность воздуха более 60%, но не превышает 75%

1.1.8. Сырые помещения — помещения, в которых относительная влажность воздуха превышает 75%.

1.1.13. В отношении опасности поражения людей электрическим током различаются:

1) помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность (см. пп.2 и 3);

2) помещения с повышенной опасностью, характеризующиеся наличием одного из следующих условий, создающих повышенную опасность:

сырость или токопроводящая пыль (см. 1.1.8 и 1.1.11);

токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т.п.);

высокая температура (см. 1.1.10);

возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющим соединение с землей, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям), с другой;

3) особо опасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность:

особая сырость (см. 1.1.9);

химически активная или органическая среда (см. 1.1.12);

одновременно два или более условий повышенной опасности (см. 1.1.13, п.2);

4) территория открытых электроустановок в отношении опасности поражения людей электрическим током приравнивается к особо опасным помещениям

1.1.29. Для цветового и цифрового обозначения отдельных изолированных или неизолированных проводников должны быть использованы цвета и цифры в соответствии с ГОСТ Р 50462 «Идентификация проводников по цветам или цифровым обозначениям».

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в т.ч. шины, должны иметь буквенное обозначение PE и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов.

Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

1.1.30. Буквенно-цифровые и цветовые обозначения одноименных шин в каждой электроустановке должны быть одинаковыми.

Шины должны быть обозначены:

1) при переменном трехфазном токе: шины фазы A - желтым, фазы B - зеленым, фазы C - красным цветами;

2) при переменном однофазном токе шина B, присоединенная к концу обмотки источника питания, - красным цветом, шина A, присоединенная к началу обмотки источника питания, - желтым цветом.

Шины однофазного тока, если они являются ответвлением от шин трехфазной системы, обозначаются как соответствующие шины трехфазного тока;

3) при постоянном токе: положительная шина (+) - красным цветом, отрицательная (-) - синим и нулевая рабочая M - голубым цветом.

Цветовое обозначение должно быть выполнено по всей длине шин, если оно предусмотрено также для более интенсивного охлаждения или антикоррозионной защиты.

Допускается выполнять цветовое обозначение не по всей длине шин, только цветовое или только буквенно-цифровое обозначение либо цветовое в сочетании с буквенно-цифровым в местах присоединения шин. Если неизолированные шины недоступны для осмотра в период, когда они находятся под напряжением, то допускается их не обозначать. При этом не должен снижаться уровень безопасности и наглядности при обслуживании электроустановки.

1.2.6. Электрическая сеть — совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

1.2.7. Приемник электрической энергии (электроприемник) — аппарат, агрегат и др., предназначенный для преобразования электрической энергии в другой вид энергии.

1.2.8. Потребитель электрической энергии — электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории.

1.2.9. Нормальный режим потребителя электрической энергии - режим, при котором обеспечиваются заданные значения параметров его работы.

Послеаварийный режим - режим, в котором находится потребитель электрической энергии в результате нарушения в системе его электроснабжения до установления нормального режима после локализации отказа.

1.2.10. Независимый источник питания - источник питания, на котором сохраняется напряжение в послеаварийном режиме в регламентированных пределах при исчезновении его на другом или других источниках питания.

К числу независимых источников питания относятся две секции или системы шин одной или двух электростанций и подстанций при одновременном соблюдении следующих двух условий:

1) каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания;

2) секции (системы) шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций (систем) шин.

1.2.11. Общие требования.При проектировании систем электроснабжения и реконструкции электроустановок должны рассматриваться следующие вопросы:

1) перспектива развития энергосистем и систем электроснабжения с учетом рационального сочетания вновь сооружаемых электрических сетей с действующими и вновь сооружаемыми сетями других классов напряжения;

2) обеспечение комплексного централизованного электроснабжения всех потребителей электрической энергии, расположенных в зоне действия электрических сетей, независимо от их принадлежности;

3) ограничение токов КЗ предельными уровнями, определяемыми на перспективу;

4) снижение потерь электрической энергии;

5) соответствие принимаемых решений условиям охраны окружающей среды.

При этом должны рассматриваться в комплексе внешнее и внутреннее электроснабжение с учетом возможностей и целесообразности технологического резервирования.

При решении вопросов резервирования следует учитывать перегрузочную способность элементов электроустановок, а также наличие резерва в технологическом оборудовании.

1.2.17. Категории электроприемников по надежности электроснабжения определяются в процессе проектирования системы электроснабжения на основании нормативной документации, а также технологической части проекта.

В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории.

Электроприемники первой категории - электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.

Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприемники второй категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники третьей категории - все остальные электроприемники, не подпадающие под определения первой и второй категорий.

1.2.21. Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

1.7.3. Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

система — система TN, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

система TN-C — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис.1.7.1);

Рис.1.7.1. Система TN-C переменного (а) и постоянного (б) тока.
Рис.1.7.1. Система TN-C переменного (а) и постоянного (б) тока.
Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике:
1 - заземлитель нейтрали (средней точки) источника питания; 2 - открытые проводящие части; 3 - источник питания постоянного тока

система TN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис.1.7.2);

Рис.1.7.2. Система TN-S переменного (а) и постоянного (б) тока.
Рис.1.7.2. Система TN-S переменного (а) и постоянного (б) тока.
Нулевой защитный и нулевой рабочий проводники разделены:
1 - заземлитель нейтрали источника переменного тока; 1-1- заземлитель вывода источника постоянного тока; 1-2 - заземлитель средней точки источника постоянного тока;2 - открытые проводящие части; 3 - источник питания

система TN-C-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис.1.7.3);

Рис.1.7.3. Система TN-C-S переменного (а) и постоянного (б) тока.
Рис.1.7.3. Система TN-C-S переменного (а) и постоянного (б) тока.
Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы:
1 - заземлитель нейтрали источника переменного тока; 1-1 - заземлитель вывода источника постоянного тока; 1-2 - заземлитель средней точки источника постоянного тока;2 - открытые проводящие части; 3 - источник питания

система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис.1.7.4);

Рис.1.7.4. Система IT переменного (а) и постоянного (б) тока.
Рис.1.7.4. Система IT переменного (а) и постоянного (б) тока.
Открытые проводящие части электроустановки заземлены. Нейтраль источника питания изолирована от земли или заземлена через большое сопротивление:
1 - сопротивление заземления нейтрали источника питания (если имеется); 2 - заземлитель; 3 - открытые проводящие части; 4 - заземляющее устройство электроустановки; 5 - источник питания

система TT — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника (рис.1.7.5).

Рис.1.7.5. Система TT переменного (а) и постоянного (б) тока.
Рис.1.7.5. Система TT переменного (а) и постоянного (б) тока.
Открытые проводящие части электроустановки заземлены при помощи заземления, электрически независимого от заземлителя нейтрали:
1 - заземлитель нейтрали источника переменного тока; 1-1 - заземлитель вывода источника постоянного тока; 1-2 - заземлитель средней точки источника постоянного тока; 2 - открытые проводящие части; 3 - заземлитель открытых проводящих частей электроустановки; 4 - источник питания

Первая буква - состояние нейтрали источника питания относительно земли:

T - заземленная нейтраль;

I - изолированная нейтраль.

Вторая - буква - состояние открытых проводящих частей относительно земли:

T - открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N - открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после ) буквы - совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

C - нулевой рабочий (N) и нулевой защитный (PE) проводники разделены;

N - N - нулевой рабочий (нейтральный) проводник;

PE - PE - защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN - PEN - совмещенный нулевой защитный и нулевой рабочий проводники.

1.7.5. Глухозаземленная нейтраль - нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству.

Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.

1.7.6. Изолированная нейтраль - нейтраль трансформатора или генератора, неприсоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

1.7.9. Открытая проводящая часть — доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции.

1.7.10. Сторонняя проводящая часть — проводящая часть, не являющаяся частью электроустановки.

1.7.11. Прямое прикосновение — электрический контакт людей или животных с токоведущими частями, находящимися под напряжением.

1.7.12. Косвенное прикосновение — электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции.

1.7.13. Защита от прямого прикосновения — защита для предотвращения прикосновения к токоведущим частям, находящимся под напряжением.

1.7.14.Защита при косвенном прикосновении - защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.

Термин повреждение изоляции следует понимать как единственное повреждение изоляции.

1.7.15. Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

1.7.16. Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления

1.7.17. Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

1.7.24. Напряжение прикосновения - напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.

Ожидаемое напряжение прикосновения - напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается.

1.7.28. Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством

1.7.29. Защитное заземление — заземление, выполняемое в целях электробезопасности.

1.7.30. Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

1.7.31. Защитное зануление в электроустановках напряжением до 1 кВ — преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

1.7.32. Уравнивание потенциалов — электрическое соединение проводящих частей для достижения равенства их потенциалов.

Защитное уравнивание потенциалов — уравнивание потенциалов, выполняемое в целях электробезопасности.

Термин уравнивание потенциалов, используемый в главе, следует понимать как защитное уравнивание потенциалов.

1.7.39. Основная изоляция — изоляция токоведущих частей, обеспечивающая в том числе защиту от прямого прикосновения.

1.7.40. Дополнительная изоляция — независимая изоляция в электроустановках напряжением до 1 кВ, выполняемая дополнительно к основной изоляции для защиты при косвенном прикосновении.

1.7.41. Двойная изоляция — изоляция в электроустановках напряжением до 1 кВ, состоящая из основной и дополнительной изоляций

1.7.42. Усиленная изоляция — изоляция в электроустановках напряжением до 1 кВ, обеспечивающая степень защиты от поражения электрическим током, равноценную двойной изоляции

1.7.43. Сверхнизкое (малое) напряжение (СНН) - напряжение, не превышающее 50 В переменного и 120 В постоянного тока.

1.7.47. Защитное электрическое разделение цепей — отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ с помощью:

двойной изоляции;

основной изоляции и защитного экрана;

усиленной изоляции.

1.7.51. Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

защитное заземление;

автоматическое отключение питания;

уравнивание потенциалов;

выравнивание потенциалов;

двойная или усиленная изоляция;

сверхнизкое (малое) напряжение;

защитное электрическое разделение цепей;

изолирующие (непроводящие) помещения, зоны, площадки.

1.7.67. Основная изоляция токоведущих частей должна покрывать токоведущие части и выдерживать все возможные воздействия, которым она может подвергаться в процессе ее эксплуатации. Удаление изоляции должно быть возможно только путем ее разрушения. Лакокрасочные покрытия не являются изоляцией, защищающей от поражения электрическим током, за исключением случаев, специально оговоренных техническими условиями на конкретные изделия. При выполнении изоляции во время монтажа она должна быть испытана в соответствии с требованиями гл.1.8.

В случаях, когда основная изоляция обеспечивается воздушным промежутком, защита от прямого прикосновения к токоведущим частям или приближения к ним на опасное расстояние, в том числе в электроустановках напряжением выше 1 кВ, должна быть выполнена посредством оболочек, ограждений, барьеров или размещением вне зоны досягаемости.

1.7.68. Ограждения и оболочки в электроустановках напряжением до 1 кВ должны иметь степень защиты не менее IP 2X, за исключением случаев, когда большие зазоры необходимы для нормальной работы электрооборудования.

Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность.

Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей. При невозможности соблюдения этих условий должны быть установлены промежуточные ограждения со степенью защиты не менее IP 2X, удаление которых также должно быть возможно только при помощи специального ключа или инструмента.

1.7.90. Заземляющее устройство, которое выполняется с соблюдением требований к его сопротивлению, должно иметь в любое время года сопротивление не более 0,5 Ом с учетом сопротивления естественных и искусственных заземлителей.

В целях выравнивания электрического потенциала и обеспечения присоединения электрооборудования к заземлителю на территории, занятой оборудованием, следует прокладывать продольные и поперечные горизонтальные заземлители и объединять их между собой в заземляющую сетку.

Продольные заземлители должны быть проложены вдоль осей электрооборудования со стороны обслуживания на глубине 0,5-0,7 м от поверхности земли и на расстоянии 0,8-1,0 м от фундаментов или оснований оборудования. Допускается увеличение расстояний от фундаментов или оснований оборудования до 1,5 м с прокладкой одного заземлителя для двух рядов оборудования, если стороны обслуживания обращены друг к другу, а расстояние между основаниями или фундаментами двух рядов не превышает 3,0 м.

Поперечные заземлители следует прокладывать в удобных местах между оборудованием на глубине 0,5-0,7 м от поверхности земли. Расстояние между ними рекомендуется принимать увеличивающимся от периферии к центру заземляющей сетки. При этом первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4,0; 5,0; 6,0; 7,5; 9,0; 11,0; 13,5; 16,0; 20,0 м. Размеры ячеек заземляющей сетки, примыкающих к местам присоединения нейтралей силовых трансформаторов и короткозамыкателей к заземляющему устройству, не должны превышать 66 м.

Горизонтальные заземлители следует прокладывать по кpaю территории, занимаемой заземляющим устройством так, чтобы они в совокупности образовывали замкнутый контур.

Если контур заземляющего устройства располагается в пределах внешнего ограждения электроустановки, то у входов и въездов на ее территорию следует выравнивать потенциал путем установки двух вертикальных заземлителей, присоединенных к внешнему горизонтальному заземлителю напротив входов и въездов. Вертикальные заземлители должны быть длиной 3-5 м, а расстояние между ними должно быть равно ширине входа или въезда.

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN- или PE-проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении земли ρ>100 Ом·м допускается увеличивать указанные нормы в 0,01 ρ раз, но не более десятикратного.

1.7.109. Заземлители.В качестве естественных заземлителей могут быть использованы:

1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;

2) металлические трубы водопровода, проложенные в земле;

3) обсадные трубы буровых скважин;

4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.;

5) рельсовые пути магистральных неэлектрифицированных и железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;

6) другие находящиеся в земле металлические конструкции сооружения;

7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.

1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными.

Искусственные заземлители не должны иметь окраски.

Материал и наименьшие размеры заземлителей должны соответствовать приведенным в табл.1.7.4.

1.7.117. Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный - 10 мм2, алюминиевый - 16 мм2, стальной - 75 мм2.

1.7.121. Защитные проводники (PE-проводники).В качестве PE-проводников в электроустановках напряжением до 1 кВ могут использоваться:

1) специально предусмотренные проводники:

жилы многожильных кабелей;

изолированные или неизолированные провода в общей оболочке с фазными проводами;

стационарно проложенные изолированные или неизолированные проводники;

2) открытые проводящие части электроустановок:

алюминиевые оболочки кабелей;

стальные трубы электропроводок;

металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления.

металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления.

3) некоторые сторонние проводящие части:

металлические строительные конструкции зданий и сооружений (фермы, колонны и т.п.);

арматура железобетонных строительных конструкций зданий при условии выполнения требований 1.7.122;

металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.).

1.7.126. Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл.1.7.5.

Таблица 1.7.5.

Наименьшие сечения защитных проводников

Сечение фазных проводников, мм 2 Наименьшее сечение защитных проводников, мм 2
S ≤ 16 S
16 < S ≤ 35 16
S < 35 S/2

Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Допускается, при необходимости, принимать сечение защитного проводника менее требуемых, если оно рассчитано по формуле (только для времени отключения ≤ 5 с):

\[S\leq I\sqrt{t/ k}\],

где S - площадь поперечного сечения защитного проводника, мм 2;

I - ток короткого замыкания, обеспечивающий время отключения поврежденной цепи защитным аппаратом в соответствии с табл.1.7.1 и 1.7.2 или за время не более 5 с в соответствии с 1.7.79, А;

t - время срабатывания защитного аппарата, с;

k - коэффициент, значение которого зависит от материала защитного проводника, его изоляции, начальной и конечной температур. Значение для защитных проводников в различных условиях приведены в табл.1.7.6-1.7.9.

Таблица 1.7.6

Значение коэффициента k для изолированных защитных проводников,не входящих в кабель, и для неизолированных проводников,касающихся оболочки кабелей(начальная температура проводника принята равной 30 °С)

Параметр Материал изоляции
Поливинил хлорид (ПВХ) Поливинил хлорид (ПВХ) Бутиловая резина
Конечная температура, °С 160 250 220
k проводника:
медного 143 176 166
алюминиевого 95 116 110
стального 52 64 60

Таблица 1.7.7

Значение коэффициента k для защитного проводника, входящего в многожильный кабель

Параметр Материал изоляции
Поливинил хлорид (ПВХ) Сшитый полиэтилен, этиленпропиленовая резина Бутиловая резина
Начальная температура, °С 70 90 85
Конечная температура, °С 160 250 220
k проводника:
медного 115 143 134
алюминиевого 76 94 89

Таблица 1.7.8

Значение коэффициента k при использовании в качестве защитного проводника алюминиевой оболочки кабеля

Параметр Материал изоляции
Поливинил хлорид (ПВХ) Сшитый полиэтилен, этиленпропиленовая резина Бутиловая резина
Начальная температура, °С 60 80 75
Конечная температура, °С 160 250 220
k 81 98 93

Таблица 1.7.9

Значение коэффициента k для неизолированныхпроводников, когда указанные температуры не создают опасности повреждения находящихся вблизи материалов (начальная температура проводника принята равной 30 °С)

Материал проводника Условия Проводники
Проложенные открыто и в специально отведенных местах Эксплуатируемые
в нормальной среде в пожароопасной среде
Медь Максимальная температура, °С 500 200 150
k 228 159 138
Алюминий Максимальная температура, °С 300[1] 200 150
k 125 105 91
Сталь Максимальная температура, °С 500[1] 200 150
k 82 58 50
  1. ? Указанные температуры допускаются, если они не ухудшают качество соединений.

Если при расчете получается сечение, отличное от приведенного в табл.1.7.5, то следует выбирать ближайшее большее значение, а при получении нестандартного сечения - применять проводники ближайшего большего стандартного сечения.

Значения максимальной температуры при определении сечения защитного проводника не должны превышать предельно допустимых температур нагрева проводников при КЗ в соответствии с гл.1.4, а для электроустановок во взрывоопасных зонах должны соответствовать ГОСТ 22782.0 "Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний".

1.7.127.Во всех случаях сечение медных защитных проводников, не входящих в состав кабеля или проложенных не в общей оболочке (трубе, коробе, на одном лотке) с фазными проводниками, должно быть не менее:

2,5 мм2 - при наличии механической защиты;

4 мм2 - при отсутствии механической защиты.

Сечение отдельно проложенных защитных алюминиевых проводников должно быть не менее 16 мм2.

1.7.137. Сечение проводников основной системы уравнивания потенциалов должно быть не менее половины наибольшего сечения защитного проводника электроустановки, если сечение проводника уравнивания потенциалов при этом не превышает 25 мм по меди или равноценное ему из других материалов.

Применение проводников большего сечения, как правило, не требуется. Сечение проводников основной системы уравнивания потенциалов в любом случае должно быть не менее: медных - 6 мм2, алюминиевых - 16 мм2, стальных - 50 мм2.

1.7.142. Присоединения заземляющих и нулевых защитных проводников и проводников уравнивания потенциалов к открытым проводящим частям должны быть выполнены при помощи болтовых соединений или сварки.

Присоединения оборудования, подвергающегося частому демонтажу или установленного на движущихся частях или частях, подверженных сотрясениям и вибрации, должны выполняться при помощи гибких проводников.

Соединения защитных проводников электропроводок и ВЛ следует выполнять теми же методами, что и соединения фазных проводников.

При использовании естественных заземлителей для заземления электроустановок и сторонних проводящих частей в качестве защитных проводников и проводников уравнивания потенциалов контактные соединения следует выполнять методами, предусмотренными ГОСТ 12.1.030 «ССБТ. Электробезопасность. Защитное заземление, зануление».

1.7.148. Питание переносных электроприемников переменного тока следует выполнять от сети напряжением не выше 380/220 В.

В зависимости от категории помещения по уровню опасности поражения людей электрическим током (см. гл.1.1) для защиты при косвенном прикосновении в цепях, питающих переносные электроприемники, могут быть применены автоматическое отключение питания, защитное электрическое разделение цепей, сверхнизкое напряжение, двойная изоляция.

1.8.1. Электрооборудование до 500 кВ, вновь вводимое в эксплуатацию в энергосистемах и у потребителей, должно быть подвергнуто приемо-сдаточным испытаниям в соответствии с требованиями настоящей главы.

В случаях, когда указаниями Минтопэнерго России предусматриваются повышенные требования по сравнению с требованиями настоящей главы, при испытаниях электрооборудования, вводимого в эксплуатацию энергосистемами, следует руководствоваться указаниями Министерства. Этими же указаниями следует руководствоваться при испытаниях электрооборудования напряжением выше 500 кВ.

При проведении приемо-сдаточных испытаний электрооборудования, не охваченного настоящими нормами, следует руководствоваться инструкциями заводов-изготовителей.

1.8.4. Заключение о пригодности оборудования к эксплуатации дается на основании результатов всех испытаний и измерений, относящихся к данной единице оборудования.

1.8.5. Все измерения, испытания и опробования в соответствии с действующими директивными документами, инструкциями заводов-изготовителей и настоящими нормами, произведенные монтажным персоналом в процессе монтажа, а также наладочным персоналом непосредственно перед вводом электрооборудования в эксплуатацию, должны быть оформлены соответствующими актами и протоколами.

1.8.8. Изоляция электрооборудования иностранных фирм (кроме вращающихся машин), имеющая электрическую прочность ниже предусмотренной нормами настоящей главы, должна испытываться напряжением, составляющим 90% заводского испытательного напряжения, если нет других указаний поставщика.

1.8.13. Синхронные генераторы и компенсаторы

Синхронные генераторы мощностью более 1 МВт напряжением выше 1 кВ, а также синхронные компенсаторы должны испытываться в полном объеме настоящего параграфа.

Генераторы мощностью до 1 МВт напряжением выше 1 кВ должны испытываться по пп.1-5, 7-15 настоящего параграфа.

Генераторы напряжением до 1 кВ независимо от их мощности должны испытываться по пп.2, 4, 5, 8, 10-14 настоящего параграфа.

1. Определение возможности включения без сушки генераторов выше 1 кВ.

Следует производить в соответствии с указанием завода-изготовителя.

2. Измерение сопротивления изоляции.

Сопротивление изоляции должно быть не менее значений, приведенных в табл.1.8.1.

Таблица 1.8.1.

Допустимые значения сопротивления изоляции и коэффициента адсорбции

Испытуемый элемент Напряжение мегаомметра, В Допустимое значение сопротивления изоляции, МОм Примечание
1. Обмотка статора 500, 1000, 2500 Не менее 10 МОм на 1 кВ номинального линейного напряжения. Для каждой фазы или ветви в отдельности относительно корпуса и других заземленных фаз или ветвей. Значение R60/R15 не ниже 1,3
2500 По инструкции завода-изготовителя. При протекании дистиллята через обмотку
2. Обмотка ротора 500, 1000 Не менее 0,5 (при водяном охлаждении - с осушенной обмоткой) Допускается ввод в эксплуатацию генераторов мощностью не выше 300 МВт с неявнополюсными роторами, при косвенном или непосредственном воздушном и водородном охлаждении обмотки, имеющей сопротивление изоляции не ниже 2 кОм при температуре 75 °С или 20 кОм при температуре 20 °С. При большей мощности ввод генератора в эксплуатацию с сопротивлением изоляции обмотки ротора ниже 0,5 МОм (при 10-30 °С) допускается только по согласованию с заводом-изготовителем.
1000 По инструкции завода-изготовителя. При протекании дистиллята через охлаждающие каналы обмотки.
3. Цепи возбуждения генератора и коллекторного возбудителя со всей присоединенной аппаратурой (без обмотки ротора и возбудителя) 500-1000 Не менее 1,0
4. Обмотки коллекторных возбудителя и подвозбудителя 1000 Не менее 0,5
5. Бандажи якоря и коллектора коллекторных возбудителя и подвозбудителя 1000 Не менее 0,5 При заземленной обмотке якоря
6. Изолированные стяжные болты стали статора (доступные для измерения) 1000 Не менее 0,5
7. Подшипники и уплотнения вала 1000 Не менее 0,3 для гидрогенераторов и 1,0 для турбогенераторов и компенсаторов. Для гидрогенераторов измерение производится, если позволяет конструкция генератора и в заводской инструкции не указаны более жесткие нормы.
8. Диффузоры, щиты вентиляторов и другие узлы статора генераторов 500, 1000 В соответствии с заводскими требованиями
9. Термодатчики с соединительными проводами, включая соединительные провода, уложенные внутри генератора
- с косвенным охлаждением обмоток статора 250 или 500 Не менее 1,0 Не менее 1,0
Не менее 1,0 500 Не менее 0,5
Не менее 0,5 2500 1000 Измерение производится до соединения вывода с обмоткой статора

3. Испытание изоляции обмотки статора повышенным выпрямленным напряжением с измерением тока утечки по фазам.

Испытанию подвергается каждая фаза или ветвь в отдельности при других фазах или ветвях, соединенных с корпусом. У генераторов с водяным охлаждением обмотки статора испытание производится в случае, если возможность этого предусмотрена в конструкции генератора.

Значения испытательного напряжения приведены в табл.1.8.2.

Таблица 1.8.2.

Испытательное выпрямленное напряжение для обмоток статоров синхронных генераторов и компенсаторов

Мощность генератора, МВт, компенсатора, MB·A Номинальное напряжение, кВ Амплитудное испытательное напряжение, кВ
Менее 1 Все напряжения 2,4Uном. + 1,2
1 и более До 3.3 2,4+1,2Uном.
Св. 3,3 до 6,6 включит. 1,28•2,5Uном.
Св. 6,6 до 20 включит. 1,28(2Uном. + 3)
Св. 20 до 24 включит. 1,28(2Uном. + 1)

Для турбогенераторов типа ТГВ-300 испытание следует производить по ветвям.

Испытательное выпрямленное напряжение для генераторов типа ТГВ-200 и ТГВ-300 соответственно принимаются 40 и 50 кВ.

Для турбогенераторов ТВМ-500 (Uном.=36,75 кВ) испытательное напряжение - 75 кВ.

Измерение токов утечки для построения кривых зависимости их от напряжения производится не менее чем при пяти значениях выпрямленного напряжения - от 0,2 Umax до Umax равными ступенями. На каждой ступени напряжение выдерживается в течение 1 минуты. При этом фиксируются токи утечки через 15 и 60 с.

Оценка полученной характеристики производится в соответствии с указаниями завода-изготовителя.

4. Испытание изоляции повышенным напряжением промышленной частоты.

Испытание проводится по нормам, приведенным в табл.1.8.3

Таблица 1.8.3.

Испытательное напряжение промышленной частоты для обмоток синхронных генераторов и компенсаторов

Испытуемый элемент Характеристика или тип генератора Испытательное напряжение, кВ Примечание
1. Обмотка статора генератора Мощность до 1 МВт, номинальное напряжение выше 0,1 кВ 0,8(2Uном.+1), но не менее 1,2
Мощность от 1 МВт и выше, номинальное напряжение до 3,3 кВ включительно 0,8(2Uном.+1)
Мощность от 1 МВт и выше, номинальное напряжение свыше 3,3 до 6,6 кВ включительно 0,8•2,5Uном.
Мощность от 1 МВт и выше, номинальное напряжение свыше 6,6 до 20 кВ включительно 0,8(2Uном.+3)
Мощность от 1 МВт и выше, номинальное напряжение свыше 20 кВ 0,8(2Uном.+1)
2. Обмотка статора гидрогенератора, шихтовка или стыковка частей статора которого производится на месте монтажа, по окончании полной сборки обмотки и изолировки соединени Мощность от 1 МВт и выше, номинальное напряжение до 3,3 кВ включительно 2Uном.+1 Если сборка статора производится на месте монтажа, но не на фундаменте, то до установки статора на фундамент его испытания производятся по п.2, а после установки - по п.1 таблицы
Мощность от 1 МВт и выше, номинальное напряжение свыше 3,3 до 6,6 кВ включительно 2,5Uном.
Мощность от 1 МВт и выше, номинальное напряжение свыше 3,3 до 6,6 кВ включительно 2Uном.+3
3. Обмотка явнополюсного ротора Генераторы всех мощностей 8•Uном. возбуждения генератора, но не ниже 1,2 и не выше 2,8 кВ
4. Обмотка неявнополюсного ротора Генераторы всех мощностей 1,0 Испытательное напряжение принимается равным 1 кВ тогда, когда это не противоречит требованиям технических условий завода-изготовителя. Если техническими условиями предусмотрены более жесткие нормы испытания, испытательное напряжение должно быть повышено.
5. Обмотка коллекторных возбудителя и подвозбудителя Генераторы всех мощносте 8•Uном. возбуждения генератора, но не ниже 1,2 и не выше 2,8 кВ Относительно корпуса и бандажей
6. Цепи возбуждения Генераторы всех мощностей 1,0
7. Реостат возбуждения Генераторы всех мощностей 1,0
8. Резистор цепи гашения ноля и АГП Генераторы всех мощностей 2,0
9. Концевой вывод обмотки статора ТГВ -200, ТГВ-200М, 31,0 , 34,5 Испытания проводятся до установки концевых выводов на турбогенератор
ТГВ-300, ТГВ-500 39,0[1], 43,0[2]
  1. ? Для концевых выводов, испытанных на заводе вместе с изоляцией обмотки статора..
  2. ? Для резервных концевых выводов перед установкой на турбогенератор.

Испытанию подвергается каждая фаза или ветвь в отдельности при других фазах или ветвях, соединенных с корпусом.

Продолжительность приложения нормированного испытательного напряжения 1 мин.

При проведении испытаний изоляции повышенным напряжением промышленной частоты следует руководствоваться следующим:

а) испытание изоляции обмоток статора генератора рекомендуется производить до ввода ротора в статор. Если стыковка и сборка статора гидрогенератора осуществляются на монтажной площадке и впоследствии статор устанавливается в шахту в собранном виде, то изоляция его испытывается дважды: после сборки на монтажной площадке и после установки статора в шахту до ввода ротора в статор.В процессе испытания осуществляется наблюдение за состоянием лобовых частей машины: у турбогенераторов - при снятых торцовых щитах, у гидрогенераторов - при открытых вентиляционных люках;

б) испытание изоляции обмотки статора для машин с водяным охлаждением следует производить при циркуляции дистиллированной воды в системе охлаждения с удельным сопротивлением не менее 100 кОм/см и номинальном расходе;

в) после испытания обмотки статора повышенным напряжением в течение 1 мин у генераторов 10 кВ и выше испытательное напряжение снизить до номинального напряжения генератора и выдержать в течение 5 мин для наблюдения за коронированием лобовых частей обмоток статора. При этом не должно быть сосредоточенного в отдельных точках свечения желтого или красного цвета, появления дыма, тления бандажей и тому подобных явлений. Голубое и белое свечение допускается;

г) испытание изоляции обмотки ротора турбогенераторов производится при номинальной частоте вращения ротора;

д) перед включением генератора в работу по окончании монтажа (у турбогенераторов - после ввода ротора в статор и установки торцевых щитов) необходимо провести контрольное испытание номинальным напряжением промышленной частоты или выпрямленным напряжением, равным 1,5Uном.. Продолжительность испытаний 1 мин.

5. Измерение сопротивления постоянному току.

Нормы допустимых отклонений сопротивления постоянному току приведены в табл.1.8.4.

Таблица 1.8.4.

Допустимое отклонение сопротивления постоянному току

Испытуемый объект Норма
Обмотка статора (измерение производить для каждой фазы или ветви в отдельности) Измеренные сопротивления в практически холодном состоянии обмоток различных фаз не должны отличаться одно от другого более чем на 2%. Вследствие конструктивных особенностей (большая длина соединительных дуг и пр.) расхождение между сопротивлениями ветвей у некоторых типов генераторов может достигать 5%.
Обмотка ротора Измеренное сопротивление обмоток не должно отличаться от данных завода-изготовителя более чем на 2%. У явнополюсных роторов измерение производится для каждого полюса в отдельности или попарно.
Резистор гашения поля, реостаты возбуждения Сопротивление не должно отличаться от данных завода-изготовителя более чем на 10%.
Обмотки возбуждения коллекторного возбудителя Значение измеренного сопротивления не должно отличаться от исходных данных более чем на 2%.
Обмотка якоря возбудителя (между коллекторными пластинами) Значения измеренного сопротивления не должны отличаться друг от друга более чем на 10% за исключением случаев, когда это обусловлено схемой соединения.

При сравнении значений сопротивлений они должны быть приведены к одинаковой температуре.

6. Измерение сопротивления обмотки ротора переменному току.

Измерение производится в целях выявления витковых замыканий в обмотках ротора, а также состояния демпферной системы ротора. У неявнополюсных роторов измеряется сопротивление всей обмотки, а у явнополюсных - каждого полюса обмотки в отдельности или двух полюсов вместе. Измерение следует производить при подводимом напряжении 3 В на виток, но не более 200 В. При выборе значения подводимого напряжения следует учитывать зависимость сопротивления от значения подводимого напряжения. Сопротивление обмоток неявнополюсных роторов определяют на трех-четырех ступенях частоты вращения, включая номинальную, и в неподвижном состоянии, поддерживая приложенное напряжение или ток неизменным. Сопротивление по полюсам или парам полюсов измеряется только при неподвижном роторе. Отклонения полученных результатов от данных завода-изготовителя или от среднего значения измеренных сопротивлений полюсов более чем на 3-5% свидетельствуют о наличии дефектов в обмотке ротора. На возникновение витковых замыканий указывает скачкообразный характер снижения сопротивления с увеличением частоты вращения, а на плохое качество в контактах демпферной системы ротора указывает плавный характер снижения сопротивления с увеличением частоты вращения. Окончательный вывод о наличии и числе замкнутых витков следует делать на основании результатов снятия характеристики КЗ и сравнения ее с данными завода-изготовителя.

7. Проверка и испытание электрооборудования систем возбуждения.

Приводятся нормы испытаний силового оборудования систем тиристорного самовозбуждения (далее СТС), систем независимого тиристорного возбуждения (СТН), систем безщеточного возбуждения (БСВ), систем полупроводникового высокочастотного возбуждения (ВЧ). Проверка автоматического регулятора возбуждения, устройств защиты, управления, автоматики и др. производится в соответствии с указаниями завода-изготовителя.

Проверку и испытание электромашинных возбудителей следует производить в соответствии с 1.8.14.

7.1. Измерение сопротивления изоляции.

Значения сопротивлений изоляции при температуре 10-30 °С должны соответствовать приведенным в табл.1.8.5.

Таблица 1.8.5.

Сопротивление изоляции и испытательные напряжения элементов систем возбуждения

Измерение сопротротивления изоляции
Испытуемый объект Напряжение мегаомметра, B Минимальное значение сопротивления изоляции, МОм Значение испытательного напряжения промышленной частоты Примечание
1. Тиристорный преобразователь (ТП) цепи ротора главного генератора в системах возбуждения СТС, СТН: токоведущие цепи преобразователей, связанные с тиристорами защитные цепи, вторичные обмотки выходных трансформаторов системы управления и т.д.; примыкающие к преобразователям отключенные разъединители 2500 5 0,8 заводского испытательного напряжения ТП, но не менее 0,8 заводского испытательного напряжения обмотки ротора Относительно корпуса и соединенных с ним вторичных цепей ТП (первичных обмоток импульсных трансформаторов СУТ, блок-контактов силовых предохранителей, вторичных обмоток трансформаторов делителей тока и т.д.), примыкающих к ТП силовых элементов схемы (вторичных обмоток трансформаторов собственных нужд в СТС, другой стороны разъединителей в СТС ряда модификаций).
(СТС), первичные обмотки трансформаторов собственных нужд (СТС). В системах с водяным охлаждением ТП вода при испытаниях отсутствует Тиристоры (аноды, катоды, управляющие электроды) при испытаниях должны быть закорочены, а блоки системы управления тиристорами СУТ выдвинуты из разъемов
2. Тиристорный преобразователь в цепи возбуждения возбудителя системы БСВ: токоведущие части, тиристоры и связанные с ними цепи (см. п.1). Тиристорый преобразователь в цепи возбуждения ВГ системы СТН 1000 5 0,8 заводского испытательного напряжения ТП, но не менее 0,8 испытательного напряжения обмотки возбуждения обращенного генератора или ВГ Относительно корпуса и соединенных с ним вторичных цепей ТП, не связанных с силовыми цепями (см. п.1). При испытаниях ТП отключен по входу и выходу от силовой схемы; тиристоры (аноды, катоды, управляющие электроды) должны быть закорочены, а блоки СУТ выдвинуты из разъемов
3. Выпрямительная установка в системе ВЧ возбуждения. 1000 5 0,8 заводского испытательного напряжения выпрямительной установки, но не менее 0,8 испытательного напряжения обмотки ротора. Относительно корпуса. При испытаниях выпрямительная установка отключена от источника питания и обмотки ротора, шины питания и шины выхода (А, В, С, +, -) объединены.
4. Вспомогательный синхронный генератор ВГ в системах СТН:
- обмотки статора 2500 5,0 0,8 заводского испытательного напряжения обмотки статора ВГ, но не менее 0,8 испытательного напряжения обмотки ротора главного генератора Относительно корпуса и между обмотками
- обмотки возбуждения 1000 5,0 0,8 заводского испытательного напряжения обмотки возбуждения обращенного генератора или ВГ Относительно корпуса
5. Индукторный генератор в системе ВЧ возбуждения:
- рабочие обмотки (три фазы) и обмотка последовательного возбуждения 1000 5,0 0,8 заводского испытательного напряжения обмоток, но не менее 0,8 испытательного напряжения обмотки ротора генератора Относительно корпуса и соединенных с ним обмоток независимого возбуждения, между обмотками
- обмотки независимого возбуждения 1000 5,0 0,8 заводского испытательного напряжения обмоток Относительно корпуса и между обмотками независимого возбуждения
6. Подвозбудитель в системе ВЧ возбуждения 1000 5,0 0,8 заводского испытательного напряжения Каждая фаза относительно других, соединенных с корпусом
7. Обращенный генератор совместно с вращающимся преобразователем в системе БСВ:
- обмотки якоря совместно с вращающимся преобразователем; 1000 5,0 0,8 заводского испытательного напряжения обмотки якоря Относительно корпуса. Возбудитель отсоединен от ротора генератора; вентили, RC - цепи или варисторы зашунтированы (соединены +, -, шпильки переменного тока); подняты щетки на измерительных контактных кольцах
- обмотки возбуждения обращенного генератора 500 5,0 0,8 заводского испытательного напряжения обмотки возбуждения, но не менее 1,2 кВ Относительно корпуса. Обмотки возбуждения отсоединены от схемы
8. Выпрямительный трансформатор ВТ в системах СТС. 2500 5,0 0,8 заводского испытательного напряжения обмоток трансформатора; 0,8 заводского испытательного напряжения обмоток трансформатора;
Выпрямительные трансформаторы в системах возбуждения ВГ(СТН) и БСВ: вторичные обмотки для ВГ и БСВ - не менее 1,2 кВ
первичная обмотка 2500 5,0
вторичная обмотка 1000
9. Последовательные трансформаторы в системах СТС 2500 5,0 0,8 заводского испытательного напряжения обмоток Относительно корпуса и между обмотками
10. Токопроводы, связывающие источники питания (ВГ в системе СТН, ВТ и ПТ в системе СТС), индукторный генератор в ВЧ системе с тиристорными или диодными преобразователями, токопроводы постоянного тока:
- без присоединенной аппаратуры; 2500 10 0,8 заводского испытательного напряжения токопроводов Относительно "земли" между фазами.
- с присоединенной аппаратурой 2500 5,0 0,8 заводского испытательного напряжения обмотки ротора Относительно "земли" между фазами.
11. Силовые элементы систем СТС, СТН, ВЧ (источники питания, преобразователи и т.д.) со всей присоединенной аппаратурой вплоть до выключателей ввода возбуждения либо до разъединителей выхода преобразователей (схемы систем возбуждения без резервных возбудителей):
- системы без водяного охлаждения преобразователей и с водяным охлаждением при не заполненной водой системе охлаждения; 1000 1,0 1,0 кВ Относительно корпуса
- при заполненной водой (с удельным сопротивлением не менее 75 кОм·см) системе охлаждения ТП 1000 0,15 1,0 кВ Блоки системы управления выдвинуты
12. Силовые цепи возбуждения генератора без обмотки ротора (после выключателя ввода возбуждения или разъединителей постоянного тока (см. п.11); устройство АГП, разрядник, силовой резистор, шинопроводы и т.д. Цепи, подключенные к измерительным кольцам в системе БСВ (обмотка ротора отключена) 1000 0,1 0,8 заводского испытательного напряжения ротора Относительно "земли"

7.2. Испытание повышенным напряжением промышленной частоты.

Значение испытательного напряжения принимается согласно табл.1.8.5, длительность приложения испытательного напряжения 1 мин.

7.3. Измерение сопротивления постоянному току обмоток трансформаторов и электрических машин в системах возбуждения.

Сопротивление обмоток электрических машин (вспомогательный генератор в системе СТН, индукторный генератор в системе ВЧ, обращенный синхронный генератор в системе БСВ) не должно отличаться более чем на 2% от заводских данных; обмоток трансформаторов (выпрямительных в системах СТС, СТН, БСВ; последовательных в отдельных системах СТС) - более чем на 5%. Сопротивления параллельных ветвей рабочих обмоток индукторных генераторов не должны отличаться друг от друга более чем на 15%, сопротивления фаз вращающихся подвозбудителей - не более чем на 10%.

7.4. Проверка трансформаторов (выпрямительных, последовательных, собственных нужд, начального возбуждения, измерительных трансформаторов напряжения и тока).

Проверка производится в соответствии с нормами, приведенными в 1.8.16, 1.8.17, 1.8.18. Для последовательных трансформаторов ПТ определяется также зависимость между напряжением на разомкнутых вторичных обмотках и током статора генератора U2п.т.=?(Ic.т.)

Характеристика U2п.т.=?(Ic.т.) определяется при снятии характеристик трехфазного короткого замыкания генератора (блока) до Icт.ном.. Характеристики отдельных фаз (при однофазных последовательных трансформаторах) не должны различаться между собой более чем на 5%.

7.5. Определение характеристики вспомогательного синхронного генератора промышленной частоты в системах СТН.

Вспомогательный генератор (ВГ) проверяется в соответствии с п.8 данного параграфа. Характеристика короткого замыкания ВГ определяется до Icт.ном., а характеристика холостого хода до 1,3Ucт.ном. с проверкой витковой изоляции в течение 5 мин.

7.6. Определение характеристики индукторного генератора совместно с выпрямительной установкой в системе ВЧ возбуждения.

Производится при отключенной обмотке последовательного возбуждения.

Характеристика холостого хода индукторного генератора совместно с выпрямительной установкой (ВУ) , [Uc.т.,Uв.у.=?(Iн.в.), где Iн.в. - ток в обмотке независимого возбуждения], определяемая до значения Uв.у., соответствующего удвоенному номинальному значению напряжения ротора, не должна отличаться от заводской более чем на 5%. Разброс напряжений между последовательно соединенными вентилями ВУ не должен превышать 10% среднего значения.

Характеристика короткого замыкания индукторного генератора совместно с ВУ также не должна отличаться от заводской более чем на 5%. При выпрямленном токе, соответствующем номинальному току ротора, разброс токов по параллельным ветвям в плечах ВУ не должен превышать ±20% среднего значения. Определяется также нагрузочная характеристика при работе на ротор до Ipxx[Ip =?(Iв.в.)], где Iв.в. - ток возбуждения возбудителя.

7.7. Определение внешней характеристики вращающегося подвозбудителя в системах ВЧ возбуждения.

При изменении нагрузки на подвозбудитель (нагрузкой является автоматический регулятор возбуждения) изменение напряжения подвозбудителя не должно превышать значения, указанного в заводской документации. Разность напряжения по фазам не должна превышать 10%.

7.8. Проверка элементов обращенного синхронного генератора, вращающегося преобразователя в системе БСВ.

Измеряются сопротивления постоянному току переходных контактных соединений вращающегося выпрямителя: сопротивление токопровода, состоящего из выводов обмоток и проходных шпилек, соединяющих обмотку якоря с предохранителями (при их наличии); соединения вентилей с предохранителями; сопротивление самих предохранителей вращающегося преобразователя. Результаты измерения сравниваются с заводскими нормами.

Проверяются усилия затяжки вентилей, предохранителей RC-цепей, варисторов и т.д. в соответствии с заводскими нормами.

Измеряются обратные токи вентилей вращающегося преобразователя в полной схеме с RC-цепями (либо варисторами) при напряжении, равном повторяющемуся для данного класса. Токи не должны превышать значения, указанные в заводских инструкциях на системы возбуждения.

7.9. Определение характеристик обращенного генератора и вращающегося выпрямителя в режимах трехфазного короткого замыкания генератора (блока).

Измеряются ток статора Ic.т., ток возбуждения возбудителя Iв.в., напряжение ротора Up, определяется соответствие характеристик возбудителя Up=?(Iн.в.) заводским. По измеренным токам статора и заводской характеристике короткого замыкания генератора Ic.т.=?(Ip) определяется правильность настройки датчиков тока ротора. Отклонение измеренного с помощью датчика типа ДТР-П тока ротора (тока выхода БСВ) не должно превышать 10% расчетного значения тока ротора.

7.10. Проверка тиристорных преобразователей систем СТС, СТН, БСВ.

Измерение сопротивления изоляции и испытание повышенным напряжением производятся в соответствии с табл.1.8.5.

Производятся гидравлические испытания повышенным давлением воды тиристорных преобразователей (ТП) с водяной системой охлаждения. Значение давления и время его воздействия должны соответствовать нормам завода-изготовителя на каждый тип преобразователя. Выполняется повторная проверка изоляции ТП после заполнения дисциллятом (см. табл.1.8.3).

Проверяется отсутствие пробитых тиристоров, поврежденных RC-цепей. Проверка выполняется с помощью омметра.

Проверяется целостность параллельных цепей плавкой вставки каждого силового предохранителя путем измерения сопротивления постоянному току.

Проверяется состояние системы управления тиристоров, диапазон регулирования выпрямленного напряжения при воздействии на систему управления тиристоров.

Проверяется ТП при работе генератора в номинальном режиме с номинальным током ротора. Проверка выполняется в следующем объеме:

- распределение токов между параллельными ветвями плеч преобразователей; отклонение значений токов в ветвях от среднеарифметического значения тока ветви должно быть не более 10%;

- распределение обратных напряжений между последовательно включенными тиристорами с учетом коммутационных перенапряжений; отклонение мгновенного значения обратного напряжения от среднего на тиристоре ветви должно быть не более ±20%;

- распределение тока между параллельно включенными преобразователями; токи не должны отличаться более чем на ±10% от среднего расчетного значения тока через преобразователь;

- распределение тока в ветвях одноименных плеч параллельно включенных ТП; отклонение от среднего расчетного значения тока ветви одноименных плеч не должно быть более ±20%.

7.11. Проверка выпрямительной диодной установки в системе ВЧ возбуждения.

Производится при работе генератора в номинальном режиме с номинальным током ротора. При проверке определяется:

- распределение тока между параллельными ветвями плеч; отклонение от среднего значения должно быть не более ±20%;

- распределение обратных напряжений по последовательно включенным вентилям; отклонение от среднего значения должно быть не более ±20%.

7.12. Проверка коммутационной аппаратуры, силовых резисторов, аппаратуры собственных нужд систем возбуждения.

Проверка производится в соответствии с указаниями завода-изготовителя и 1.8.34.

7.13. Измерение температуры силовых резисторов, диодов, предохранителей, шин и других элементов преобразователей и шкафов, в которых они расположены.

Измерения выполняются после включения систем возбуждения под нагрузку. Температуры элементов не должны превышать значений, указанных в инструкциях заводов-изготовителей. При проверке рекомендуется применение тепловизоров, допускается использование пирометров.

8. Определение характеристик генератора:

а) трехфазного КЗ. Характеристика снимается при изменении тока статора до номинального. Отклонения от заводской характеристики должны находиться в пределах погрешности измерения.Снижение измеренной характеристики, которое превышает погрешность измерения, свидетельствует о наличии витковых замыканий в обмотке ротора.У генераторов, работающих в блоке с трансформатором, снимается характеристика КЗ всего блока (с установкой закоротки за трансформатором). Характеристику собственно генератора, работающего в блоке с трансформатором, допускается не определять, если имеются протоколы соответствующих испытаний на стенде заводов-изготовителей.У синхронных компенсаторов без разгонного двигателя снятие характеристик трехфазного КЗ производится на выбеге в том случае, если отсутствует характеристика, снятая на заводе;

б) холостого хода. Подъем напряжения номинальной частоты на холостом ходу производить до 130% номинального напряжения турбогенераторов и синхронных компенсаторов, до 150% номинального напряжения гидрогенераторов. Допускается снимать характеристику холостого хода турбо- и гидрогенератора до номинального тока возбуждения при пониженной частоте вращения генератора при условии, что напряжение на обмотке статора не будет превосходить 1,3 номинального. У синхронных компенсаторов разрешается снимать характеристику на выбеге. У генераторов, работающих в блоке с трансформаторами, снимается характеристика холостого хода блока; при этом генератор возбуждается до 1,15 номинального напряжения (ограничивается трансформатором). Характеристику холостого хода собственно генератора, отсоединенного от трансформатора блока, допускается не снимать, если имеются протоколы соответствующих испытаний на заводе-изготовителе. Отклонение характеристики холостого хода от заводской не нормируется, но должно быть в пределах погрешности измерения.

9. Испытание междувитковой изоляции.

Испытание следует производить подъемом напряжения номинальной частоты генератора на холостом ходу до значения, соответствующего 150% номинального напряжения статора гидрогенераторов, 130% - турбогенераторов и синхронных компенсаторов. Для генераторов, работающих в блоке с трансформатором, - см. указания п.9. При этом следует проверить симметрию напряжений по фазам. Продолжительность испытания при наибольшем напряжении - 5 мин.

Испытание междувитковой изоляции рекомендуется производить одновременно со снятием характеристики холостого хода.

10. Измерение вибрации.

Вибрация (размах вибросмещений, удвоенная амплитуда колебаний) узлов генератора и их электромашинных возбудителей не должна превышать значений, приведенных в табл.1.8.6.

Таблица 1.8.6.

Предельные значения вибрации генераторов и их возбудителей

Контролируемый узел Вибрация, мкм, при частоте вращения ротора, об/мин Примечание
до 100 от 100 до 187,5 от 187,5 до 375 от 375 до 750 1500 3000
1. Подшипники турбогенераторов и возбудителей, крестовины со встроенными в них направляющими подшипниками гидрогенераторов вертикального исполнения 180 150 100 70 50 30[1] Вибрация подшипников турбогенераторов, их возбудителей и горизонтальных гидрогенераторов измеряется на верхней крышке подшипников в вертикальном направлении и у разъема - в осевом и поперечном направлениях. Для вертикальных гидрогенераторов приведенные значения вибрации относятся к горизонтальному и вертикальному направлениям.
2. Контактные кольца ротора турбогенераторов - - - - - 200 Вибрации измеряются в горизонтальном и вертикальном направлениях.
  1. ? при наличии аппаратуры контроля виброскорости производится ее измерение, среднеквадратическое значение виброскорости не должно превышать 2,8 мм·с по вертикальной и поперечной осям и 4,5 мм·с - по продольной оси.

Вибрация подшипников синхронных компенсаторов с номинальной частотой вращения ротора 750-1500 об/мин не должна превышать 80 мкм по размаху вибросмещений или 2,2 мм·с по среднеквадратическому значению вибрационной скорости.

11. Проверка и испытание системы охлаждения.

Производится в соответствии с инструкцией завода-изготовителя.

12. Проверка и испытание системы маслоснабжения.

Производится в соответствии с инструкцией завода-изготовителя.

13. Проверка изоляции подшипника при работе генератора (компенсатора).

Производится путем измерения напряжения между концами вала, а также между фундаментной плитой и корпусом изолированного подшипника. При этом напряжение между фундаментной плитой и подшипником должно быть не более напряжения между концами вала. Различие между напряжениями более чем на 10% указывает на неисправность изоляции.

14. Испытание генератора (компенсатора) под нагрузкой.

Нагрузка определяется практическими возможностями в период приемо-сдаточных испытаний. Нагрев статора при данной нагрузке должен соответствовать паспортным данным.

15. Определение характеристик коллекторного возбудителя.

Характеристика холостого хода определяется до наибольшего (потолочного) значения напряжения или значения, установленного заводом-изготовителем.

Снятие нагрузочной характеристики производится при нагрузке на ротор генератора не ниже номинального тока возбуждения генератора. Отклонения характеристик от заводских должны быть в пределах допустимой погрешности измерений.

16. Испытание концевых выводов обмотки статора турбогенератора серии ТГВ.

Помимо испытаний, указанных в табл.1.8.1 и 1.8.3, концевые выводы с конденсаторной стеклоэпоксидной изоляцией подвергаются испытаниям по пп.16.1 и 16.2.

16.1. Измерение тангенса угла диэлектрических потерь (tg ?).

Измерение производится перед установкой концевого вывода на турбогенератор при испытательном напряжении 10 кВ и температуре окружающего воздуха 10-30°С.

Значение tg ? собранного концевого вывода не должно превышать 130% значения, полученного при измерениях на заводе. В случае измерения tg ? концевого вывода без фарфоровых покрышек его значение не должно превышать 3%.

16.2. Проверка газоплотности.

Испытание на газоплотность концевых выводов, испытанных на заводе давлением 0,6 МПа, производится давлением сжатого воздуха 0,5 МПа.

Концевой вывод считается выдержавшим испытание, если при давлении 0,3 МПа падение давления не превышает 1 кПа/ч.

17. Измерение остаточного напряжения генератора при отключении АГП в цепи ротора.

Значение остаточного напряжения не нормируется.

18. Испытание генератора (компенсатора) под нагрузкой.

Нагрузка определяется практически возможностями в период приемо-сдаточных испытаний. Нагрев статора при данной нагрузке должен соответствовать данным завода-изготовителя.

1.8.14.Машины постоянного тока

3. Испытание изоляции повышенным напряжением промышленной частоты.

Испытание производится по нормам, приведенным в табл.1.8.8. Продолжительность приложения нормированного испытательного напряжения 1 мин. Обмотки машин мощностью менее 3 кВт допускается не испытывать.

Таблица 1.8.8.

Испытательное напряжение промышленной частоты изоляции машин постоянного тока

Испытуемый объект Характеристика электрической машины Испытательное напряжение, кВ
Обмотка Машины всех мощностей 8Uном., но не ниже 1,2 и не выше 2,8
Бандажи якоря То же 1
Реостаты и пускорегулировочные резисторы (испытание может проводиться совместно с цепями возбуждения) - 1(Изоляцию можно испытывать совместно с изоляцией цепей возбуждения)

1.8.15. Электродвигатели переменного тока

Электродвигатели переменного тока напряжением до 1 кВ испытываются по пп.2, 4б, 5, 6.

Электродвигатели переменного тока напряжением выше 1 кВ испытываются по пп.1-6.

Генераторы напряжением до 1 кВ независимо от их мощности должны испытываться по пп.2, 4, 5, 8, 10-14 настоящего параграфа.

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ.

Электродвигатели переменного тока включаются без сушки, если значение сопротивления изоляции и коэффициента абсорбции не ниже указанных в табл.1.8.9.

Таблица 1.8.9.

Допустимые значения сопротивления изоляции и коэффициента абсорбции для обмоток статора электродвигателейв

Мощность, номинальное напряжение электродвигателя, вид изоляции обмоток Критерии оценки состояния изоляции обмотки статора
Значение сопротивления изоляции, МОм Значение коэффициента абсорбции

R60/R15

1. Мощность более 5 МВт, термореактивная и микалентная компаундированная изоляция При температуре 10-30 °С сопротивление изоляции не ниже 10 Мом на 1 кВ номинального линейного напряжения Не менее 1,3 при температуре 10-30 °С
2. Мощность 5 МВт и ниже, напряжение выше 1 кВ, термореактивная изоляция
3. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью от 1 до 5 МВт включительно, а также двигатели меньшей мощности наружной установки с такой же изоляцией напряжением выше 1 кВ Не ниже значений, указанных в табл.1.8.10. Не менее 1,2
4. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью более 1 МВт, кроме указанных в п.3 Не ниже значений, указанных в табл.1.8.10. -
5. Напряжение ниже 1 кВ, все виды изоляции Не ниже 1,0 Мом при температуре 10-30 °С -
6. Обмотка ротора 0,2 -
7. Термоиндикаторы с соединительными проводами, подшипники В соответствии с указаниями заводов-изготовителей

2. Измерение сопротивления изоляции.

Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать нормам, приведенным в табл.1.8.10.

Таблица 1.8.10.

Наименьшие допустимые значения сопротивления изоляции для электродвигателей (табл.1.8.9, пп.3, 4)

Температура обмотки, °С Сопротивление изоляции R60, МОм, при номинальном напряжении обмотки, кВ
3-3,15 6-6,3 10-10,5
10 30 60 100
20 20 40 70
30 15 30 50
40 10 20 35
50 7 15 25
25 5 10 17
75 3 6 10

У синхронных электродвигателей и элекродвигателей с фазным ротором на напряжение 3 кВ и выше или мощностью более 1 МВт производится измерение сопротивления изоляции ротора мегаомметром на напряжение 1000 В. Измеренное значение сопротивления должно быть не ниже 0,2 МОм.

3. Испытание повышенным напряжением промышленной частоты.

Производится на полностью собранном электродвигателе.

Производится на полностью собранном электродвигателе.

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.

Значения испытательных напряжений приведены в табл.1.8.11. Продолжительность приложения испытательного напряжения 1 мин.

Таблица 1.8.11.

Испытательные напряжения промышленной частоты для обмоток электродвигателей переменного тока

Испытуемый элемент Мощность электродвигателя, кВт Номинальное напряжение электродвигателя, кВ Испытательное напряжение, кВ
1. Обмотка статора Менее 1,0 Ниже 0,1 0,8(2Uном.+0,5)
От 1,0 и до 1000 Ниже 0,1 0,8(2Uном. +1)
Выше 0,1 0,8(2Uном. +1),но не менее 1,2
От 1000 и более До 3,3 включительно 0,8(2Uном. +1)
От 1000 и более Свыше 3,3 до 6,6 включительно 0,8•2,5Uном.
От 1000 и более Свыше 6,6 0,8(2Uном. +3)
2. Обмотка ротора синхронных электродвигателей, предназначенных для непосредственного пуска, с обмоткой возбуждения, замкнутой на резистор или источник питания. 8-кратное системы возбуждения U ном., но не менее 1,2 и не более 2,8
3. Обмотка ротора электродвигателя с фазным ротором. - - 1,5U p , но не менее 1,0
4. Резистор цепи гашения поля синхронных двигателей. - - 2,0
5. Реостаты и пускорегулирующие резисторы. - - 1,5 Up[1], но не менее 1,0
  1. ? U pнапряжение на кольцах при разомкнутом неподвижном роторе и номинальном напряжении на статоре.

4. Измерение сопротивления постоянному току.

Измерение производится при практически холодном состоянии машины:

а) Обмотки статора и ротора

Измерение производится у электродвигателей на напряжение 3 кВ и выше. Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных более чем на 2%.

б) Реостаты и пускорегулировочные резисторы

Для реостатов и пусковых резисторов, установленных на электродвигателях напряжением 3 кВ и выше, сопротивление измеряется на всех ответвлениях. Для электродвигателей напряжением ниже 3 кВ измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек.

Значения сопротивления не должны отличаться от исходных значений более чем на 10%.

  1. ? Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором.

5. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом.

Продолжительность проверки не менее 1 часа.

6. Проверка работы электродвигателя под нагрузкой.

Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. Проверяется тепловое и вибрационное состояние двигателя.

1.8.19. Масляные выключатели

1. Измерение сопротивления изоляции:

а) подвижных и направляющих частей, выполненных из органических материалов. Производится мегаомметром на напряжение 2500 В.

Сопротивление изоляции не должно быть меньше значений, приведенных ниже:

Номинальное напряжение выключателя, кВ 3-10 15-150 220-500
Сопротивление изоляции, МОм 1000 3000 5000

б) вторичных цепей, электромагнитов включения и отключения и т.п. Производится в соответствии с 1.8.37.

2. Испытание вводов.

Производится в соответствии с 1.8.34.

3. Оценка состояния внутрибаковой изоляции и изоляции дугогасительных устройств.

Оценка производится у баковых масляных выключателей на напряжение 35 кВ в том случае, если при измерении tg ? вводов на полностью собранном выключателе получены повышенные значения по сравнению с нормами, приведенными в табл.1.8.30.

Внутрибаковая изоляция и изоляция дугогасительных устройств подлежат сушке, если исключение влияния этой изоляции снижает измеренный tg ? более чем на 4% (абсолютное значение).

4. Испытание изоляции повышенным напряжением промышленной частоты:

а) изоляции выключателей относительно корпуса или опорной изоляции. Производится для выключателей напряжением до 35 кВ. Испытательное напряжение для выключателей принимается в соответствии с данными табл.1.8.16. Продолжительность приложения нормированного испытательного напряжения 1 мин.

Таблица 1.8.16.

Испытательное напряжение промышленной частоты для внешней изоляции аппаратов

Испытательное напряжение, кВ, для аппаратов с изоляцией
Класс напряжения, кВ нормальной керамической нормальной органической облегченной керамической облегченной органической
3 24 21,6 13 11,7
6 32 28,8 21 18,9
10 42 37,8 32 28,8
15 55 49,5 48 43,2
20 65 58,5 - -
35 95 85,5 - -

Аналогичному испытанию должна подвергаться изоляция межконтактных разрывов масляных выключателей 6-10 кВ.

б) изоляции вторичных цепей и обмоток электромагнитов включения и отключения. Значение испытательного напряжения 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

5. Измерение сопротивления постоянному току:

а) контактов масляных выключателей. Измеряется сопротивление токоведущей системы полюса выключателя и отдельных его элементов. Значение сопротивления контактов постоянному току должно соответствовать данным завода-изготовителя;

б) шунтирующих резисторов дугогасительных устройств. Измеренное значение сопротивления должно отличаться от заводских данных не более чем на 3%;

в) обмоток электромагнитов включения и отключения, значение сопротивлений обмоток должно соответствовать указаниям заводов-изготовителей.

6. Измерение временных характеристик выключателей.

Измерение временных характеристик производится для выключателей всех классов напряжения. Измерение скорости включения и отключения следует производить для выключателей 35 кВ и выше, когда это требуется инструкцией завода-изготовителя. Измеренные характеристики должны соответствовать указаниям заводов-изготовителей.

7. Измерение хода подвижных частей (траверс) выключателя, вжима контактов при включении, одновременности замыкания и размыкания контактов.

Полученные значения должны соответствовать указаниям заводов-изготовителей.

8. Проверка регулировочных и установочных характеристик механизмов, приводов и выключателей.

Производится в объеме и по нормам инструкций заводов-изготовителей и паспортов для каждого типа привода и выключателя.

9. Проверка действия механизма свободного расцепления.

Механизм свободного расцепления привода должен позволять производить операции отключения на всем ходе контактов, т.е. в любой момент от начала операции включения.

10. Проверка минимального напряжения (давления) срабатывания выключателей.

Проверка минимального напряжения срабатывания производится пополюсно у выключателей с пополюсными приводами.

Минимальное напряжение срабатывания должно соответствовать нормам, установленным заводами - изготовителями выключателей. Значение давления срабатывания пневмоприводов должно быть на 20-30% меньше нижнего предела рабочего давления.

11. Испытание выключателей многократными опробованиями.

Многократные опробования выключателей - выполнение операций включения и отключения и сложных циклов (ВО без выдержки времени обязательны для всех выключателей; ОВ и ОВО обязательны для выключателей, предназначенных для работы в режиме АПВ) должны производиться при номинальном напряжении на выводах электромагнитов. Число операций и сложных циклов, подлежащих выполнению выключателем, должно составлять:

- 3-5 операций включения и отключения;

- 2-3 цикла каждого вида.

12. Испытание трансформаторного масла выключателей.

У баковых выключателей всех классов напряжений и малообъемных выключателей 110 кВ и выше испытание масла производится до и после заливки масла в выключатели.

У малообъемных выключателей до 35 кВ масло испытывается до заливки в дугогасительные камеры. Испытание масла производится в соответствии с табл.1.8.33 пп.1, 3, 4, 5.

13. Испытание встроенных трансформаторов тока. Производится в соответствии с 1.8.17.

1.8.20. Воздушные выключатели

1. Измерение сопротивления изоляции:

а) опорных изоляторов, изоляторов гасительных камер и отделителей, изолирующих тяг и воздухопроводов выключателей всех классов напряжений. Производится мегаомметром на напряжение 2,5 кВ.

В случае необходимости измерение сопротивления изоляции опорных изоляторов, изоляторов гасительных камер и отделителей следует производить с установкой охранных колец на внешней поверхности.

Сопротивление изоляции должно быть не ниже значений, приведенных в табл.1.8.17.

Таблица 1.8.17.

Наименьшее допустимое сопротивление опорной изоляции и изоляции подвижных частей воздушных выключателей

Испытуемый объект Сопротивление изоляции, МОм, при номинальном напряжении выключателя, кВ
До 10 15-150 220 и выше
Опорный изолятор, воздухопровод и тяга (каждое в отдельности), изготовленные из фарфора 1000 3000 5000

б) вторичных цепей, обмоток электромагнитов включения и отключения. Производится в соответствии с 1.8.37.

2. Испытание повышенным напряжением промышленной частоты:

а) изоляции выключателей. Обязательно для выключателей до 35 кВ. Опорную фарфоровую изоляцию выключателей следует испытывать повышенным напряжением промышленной частоты в соответствии с табл.1.8.16. Продолжительность приложения нормированного испытательного напряжения 1 мин.

б) изоляции вторичных цепей и обмоток электромагнитов управления. Производится в соответствии с 1.8.37.

3. Измерение сопротивления постоянному току:

а) контактов воздушных выключателей всех классов напряжения. Измерению подлежит сопротивление контактов каждого элемента гасительной камеры, отделителя в отдельности. Наибольшие допустимые значения сопротивления контактов воздушных выключателей приведены в табл.1.8.18.

Таблица 1.8.18.

Предельные значения сопротивлений постоянному току контактных систем воздушных выключателей

Тип выключателя Сопротивление контура полюса, мкОм, не более
ВВН-330-15 460
ВВ-330Б 380
ВВ-500Б 500
ВВБ-110, ВВБМ-110Б, ВВБК-110Б 80
ВВД-220Б, ВВБК-220Б 300
600
ВВБ-500А 900
ВВБ-750А 1200
ВНВ-330-40, ВНВ-330-63, ВНВ-500-40, ВНВ-500-63 150
ВНВ-750 230

Примечания:

1. Предельные значения сопротивлений одного элемента (разрыва) гасительной камеры и отделителя и одного дугогасительного устройства модуля: выключателей серии ВВН - 20 мкОм, серий ВВУ, ВВБ, ВВД, ВВБК - 80 мкОм, серии ВНВ - 70 мкОм.

2. У выключателей типа ВВ напряжением 330-500 кВ значения сопротивлений следующих участков токоведущих контуров не должны превышать:

50 мкОМ - для шин, соединяющих гасительную камеру с отделением;

80 мкОм - для шины, соединяющей две половины отделителя;

10 мкОм- для перехода с аппаратного вывода отделителя на соединительную шину.

3. Значения сопротивлений каждого разрыва дугогасительного устройства выключателей 330-750 кВ серии ВНВ не должны превышать 35 мкОм.

б) обмоток электромагнитов включения и отключения выключателей. Устанавливается для каждого типа выключателей согласно данным завода-изготовителя.

в) результаты измерений сопротивления элементов делителей напряжения и шунтирующих резисторов должны соответствовать заводским нормам, приведенным в таблице 1.8.19.

Таблица 1.8.19.

Нормируемые значения сопротивлений постоянному току омических делителей напряжения и шунтирующих резисторов

Тип выключателя Сопротивления одного элемента, Ом
ВВН-110-6 150±5
ВВШ-110Б, ВВШ-150Б 150+4-2
ВВН-154-8, ВВН-220-10, ВВН-220-15, ВВН-330-15 15000±150
ВВ-330, ВВ-500 14140±140
ВВУ-35 4,6-0,25
ВВУ-110Б

1.8.21. Элегазовые выключатели

4. Проверка минимального напряжения срабатывания выключателей.

Выключатели должны срабатывать при напряжении не более 0,85· Uном. при питании привода от источника постоянного тока; 0,7· Uном. при питании привода от сети переменного тока при номинальном давлении элегаза в полостях выключателя и наибольшем рабочем давлении в резервуарах привода. Напряжение на электромагниты должно подаваться толчком.

7. Испытание выключателей многократными опробованиями.

Многократные опробования - выполнение операций включения и отключения и сложных циклов (ВО без выдержки времени между операциями - для всех выключателей; OВ и ОВО - для выключателей, предназначенных для работы в режиме АПВ) - должны производиться при различных давлениях сжатого воздуха в приводе и напряжениях на выводах электромагнитов управления с целью проверки исправности действия выключателей согласно таблице 1.8.20. Производятся при номинальном напряжении на выводах электромагнитов привода или при номинальном давлении сжатого воздуха привода.

Число операций и сложных циклов, подлежащих выполнению выключателем, должно составлять:

- 3-5 операций включения и отключения;

- 2-3 цикла каждого вида.

1.8.27. Сборные и соединительные шины

Шины испытываются в объеме:

на напряжение до 1 кВ - по пп.1, 3-5;

на напряжение выше 1 кВ - по пп.2-6.

1. Измерение сопротивления изоляции подвесных и опорных фарфоровых изоляторов.

Производится мегаомметром на напряжение 2,5 кВ только при положительной температуре окружающего воздуха.

Сопротивление каждого изолятора или каждого элемента многоэлементного изолятора должно быть не менее 300 Мом.

2. Испытание изоляции повышенным напряжением промышленной частоты.

Испытание изоляции проводится согласно табл.1.8.24.

Продолжительность испытания - 1 мин.

3. Проверка качества выполнения болтовых контактных соединений.

Производится выборочная проверка качества затяжки контактов и вскрытие 2-3% соединений. Измерение переходного сопротивления контактных соединений следует производить выборочно на 2-3% соединений. Контактные соединения на ток более 1000 А рекомендуется проверять в полном объеме.

Падение напряжения или сопротивление на участке шины (0,7-0,8 м) в месте контактного соединения не должно превышать падения напряжения или сопротивления участка шин той же длины более чем в 1,2 раза.

4. Проверка качества выполнения опрессованных контактных соединений.

Опрессованные контактные соединения бракуются, если:

а) их геометрические размеры (длина и диаметр опрессованной части) не соответствуют требованиям инструкции по монтажу соединительных зажимов данного типа;

б) на поверхности соединителя или зажима имеются трещины, следы значительной коррозии и механических повреждений;

в) кривизна опрессованного соединителя превышает 3% его длины;

г) стальной сердечник опрессованного соединителя смещен относительно симметричного положения более чем на 15% длины прессуемой части провода.

Следует произвести выборочное измерение переходного сопротивления 3-5% опрессованных контактных соединений. Падение напряжения или сопротивление на участке соединения не должно превышать падения напряжения или сопротивления на участке провода той же длины более чем в 1,2 раза.

5. Контроль сварных контактных соединений.

Сварные контактные соединения бракуются, если непосредственно после выполнения сварки будут обнаружены:

а) пережог провода наружного повива или нарушение сварки при перегибе соединенных проводов;

б) усадочная раковина в месте сварки глубиной более 1/3 диаметра провода.

6. Испытание проходных изоляторов.

Производится в соответствии с 1.8.34.

1.8.29. Электрофильтры

7. Проверка сопротивления заземляющих устройств.

Сопротивление заземлителя не должно превышать 4 Ом, а сопротивление заземляющих проводников (между контуром заземления и деталью оборудования, подлежащей заземлению) - 0,1 Ом.

1.8.30. Конденсаторы

Таблица 1.8.27.

Допустимое изменение емкости конденсатора

Наименование Допустимое изменение измеренной емкости конденсатора относительно паспортного значения, %
Конденсаторы связи отбора мощности и делительные ±5
Конденсаторы для повышения коэффициента мощности и конденсаторы, используемые для защиты от перенапряжения ±5
Конденсаторы продольной компенсации +5
-10

1.8.33. Предохранители, предохранители-разъединители напряжением выше1кВ

1. Испытание опорной изоляции предохранителей повышенным напряжением промышленной частоты.

Испытательное напряжение устанавливается согласнотабл.1.8.24.

Продолжительность приложения нормированного испытательногонапряжения 1 мин. Испытание опорной изоляции предохранителей повышеннымнапряжением промышленной частоты может производиться совместно с испытаниемизоляторов ошиновки ячейки.

2. Проверка целости плавких вставок и токоограничивающихрезисторов.

Проверяются:

омметром - целостность плавкой вставки;

визуально - наличие маркировки на патроне и соответствиетока проектным данным.

3. Измерение сопротивления постоянному току токоведущейчасти патрона предохранителя-разъединителя.

Измеренное значение сопротивления должно соответствоватьзначению, указанному заводом-изготовителем.

4. Измерение контактного нажатия в разъемных контактахпредохранителя-разъединителя.

Измеренное значение контактного нажатия должносоответствовать указанным заводом-изготовителем.

5. Проверка состояния дугогасительной части патронапредохранителя-разъединителя.

Измеряется внутренний диаметр дугогасительной части патронапредохранителя-разъединителя.

6. Проверка работы предохранителя-разъединителя.

Выполняется 5 циклов операций включения и отключенияпредохранителя-разъединителя. Выполнение каждой операции должно быть успешным спервой попытки.

1.8.37. Электрические аппараты, вторичные цепи и электропроводки напряжением до 1 кВ

Электрические аппараты и вторичные цепи схем защит, управления, сигнализации и измерения испытываются в объеме, предусмотренном настоящим параграфом. Электропроводки напряжением до 1 кВ от распределительных пунктов до электроприемников испытываются по п.1.

1. Измерение сопротивления изоляции.Сопротивление изоляции должно быть не менее значений, приведенных в табл.1.8.34.

Таблица 1.8.34.

Допустимые значения сопротивления изоляции

Испытуемый элемент Напряжение мегаомметра, В Наименьшее допустимое значение сопротивления изоляции, МОм
1. Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях) 500-1000 10
2. Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей 500-1000 1
3. Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения машин постоянного тока, присоединенные к силовым цепям 500-1000 1
4. Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже 500 0,5
5. Электропроводки, в том числе осветительные сети 1000 0,5
6. Распределительные устройства , щиты и токопроводы (шинопроводы) 500-1000 0,5
  1. ? Измерение производится со всеми присоединенными аппаратами (катушки приводов, контакторы, пускатели, автоматические выключатели, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.п.).
  2. ? Должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых элементов.
  3. ? Сопротивление изоляции измеряется между каждым проводом и землей, а также между каждыми двумя проводами.
  4. ? Измеряется сопротивление изоляции каждой секции распределительного устройства.

2. Испытание повышенным напряжением промышленной частоты.

Испытательное напряжение для вторичных цепей схем защиты, управления, сигнализации и измерения со всеми присоединительными аппаратами (автоматические выключатели, магнитные пускатели, контакторы, реле, приборы и т.п.) 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

3. Проверка действия автоматических выключателей.

3.1. Проверка сопротивления изоляции. Производится у выключателей на номинальный ток 400 А и более. Значение сопротивления изоляции - не менее 1 МОм.

3.2. Проверка действия расцепителей. Проверяется действие расцепителя мгновенного действия. Выключатель должен срабатывать при токе не более 1,1 верхнего значения тока срабатывания выключателя, указанного заводом-изготовителем.

В электроустановках, выполненных по требованиям раздела 6, глав 7.1 и 7.2, проверяются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 2% выключателей распределительных и групповых сетей.

В других электроустановках испытываются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 1% остальных выключателей.

Проверка производится в соответствии с указаниями заводов-изготовителей. При выявлении выключателей, не отвечающих установленным требованиям, дополнительно проверяется удвоенное количестве выключателей.

4. Проверка работы автоматических выключателей и контакторов при пониженном и номинальном напряжениях оперативного тока.Значение напряжения срабатывания и количество операций при испытании автоматических выключателей и контакторов многократными включениями и отключениями приведены в табл.1.8.35.

Таблица 1.8.35.

Испытание контакторов и автоматических выключателей многократными включениями и отключениями

Операция Напряжение оперативного тока, % номинальног Количество операций
Включение 90 5
Отключение 80 5

5. Устройства защитного отключения (УЗО), выключатели дифференциального тока (ВДТ) проверяются в соответствии с указаниями завода-изготовителя.

6. Проверка релейной аппаратуры. Проверка реле защиты, управления, автоматики и сигнализации и других устройств производится в соответствии с действующими инструкциями. Пределы срабатывания реле на рабочих уставках должны соответствовать расчетным данным.

7. Проверка правильности функционирования полностью собранных схем при различных значениях оперативного тока.Все элементы схем должны надежно функционировать в предусмотренной проектом последовательности при значениях оперативного тока, приведенных в табл.1.8.36.

Таблица 1.8.36.

Напряжение оперативного тока, при котором должно обеспечиваться нормальное функционирование схем

Испытуемый объект Напряжение оперативного тока, % номинального Примечание
Схемы защиты и сигнализации в установках напряжением выше 1 кВ 80, 100
Схемы управления в установках напряжением выше 1 кВ:
испытание на включение 90, 100
то же, но на отключение 80, 100
Релейно-контакторные схемы в установках напряжением до 1 кВ 90, 100 Для простых схем «кнопка — магнитный пускатель» проверка работы на пониженном напряжении не производится
Бесконтактные схемы на логических элементах 85, 100, 110 Изменение напряжения производится на входе в блок питания

1.8.39. Заземляющие устройства

1. Проверка элементов заземляющего устройства.

Проверку следует производить путем осмотра элементов заземляющего устройства в пределах доступности осмотру. Сечения и проводимости элементов заземляющего устройства, включая главную заземляющую шину, должны соответствовать требованиям настоящих Правил и проектным данным.

2. Проверка цепи между заземлителями и заземляемыми элементами.

Следует проверить сечения, целостность и прочность проводников, их соединений и присоединений. Не должно быть обрывов и видимых дефектов в заземляющих проводниках, соединяющих аппараты с заземлителем. Надежность сварки проверяется ударом молотка.

3. Проверка состояния пробивных предохранителей в электроустановках до 1 кВ.

Пробивные предохранители должны быть исправны и соответствовать номинальному напряжению электроустановки.

4. Проверка цепи фаза - нуль в электроустановках до 1 кВ с системой TN.

Проверка производится одним из следующих способов:

- непосредственным измерением тока однофазного замыкания на корпус или нулевой защитный проводник;

- измерением полного сопротивления цепи фаза - нулевой защитный проводник с последующим вычислением тока однофазного замыкания.

Кратность тока однофазного замыкания на землю по отношению к номинальному току предохранителя или расцепителя автоматического выключателя должно быть не менее значения, указанного в главе 3.1 ПУЭ.

5. Измерение сопротивления заземляющих устройств.

Значения сопротивления заземляющих устройств с подсоединенными естественными заземлителями должны удовлетворять значениям, приведенным в соответствующих главах настоящих Правил и таблице 1.8.38.

Таблица 1.8.38.

Наибольшие допустимые значения сопротивлений заземляющих устройств

Вид электроустановки Характеристика электроустановки Сопротивление, Ом
Электроустановки электрических сетей с глухозаземленной и эффективно заземленной нейтралью. 0,5
1. Подстанции и распределительные пункты напряжением выше 1 кВ Электроустановки электрических сетей с изолированной нейтралью, с нейтралью, заземленной через дугогасящий реактор или резистор. 250/Ip
2. Воздушные линии электропередачи напряжением выше 1 кВ Заземляющие устройства опор ВЛ (см. также 2.5.129-2.5.131)
при удельном сопротивлении грунта,P, Ом·м: 10
- до 100 15
- более 100 до 500 20
- более 500 до 1000 30
- более 1000 до 5000

p×6×10-3

- более 5000
Заземляющие устройства опор ВЛ с разрядниками на подходах к распределительным устройствам с вращающимися машинами см. главу 4.2
3. Электроустановки напряжением до 1 кВ Электроустановки с источниками питания в электрических сетях с глухозаземленной нейтралью (или средней точкой) источника питания (система TN):
- в непосредственной близости от нейтрали 15/30/60
- с учетом естественных заземлителей и повторных заземлителей отходящих линий 2/4/8[2]
Электроустановки в электрических сетях с изолированной нейтралью (или средней точкой) источника питания (система IT) 50/I , более 4 Ом не требуется
4. Воздушные линии электропередачи напряжением до 1 кВ Заземляющие устройства опор ВЛ с повторными заземлителями PEN (РЕ) - проводника 30
  1. ? - расчетный ток замыкания на землю;
  2. ? - соответственно при линейных напряжениях 660, 280, 220 В;
  3. ? - полный ток замыкания на землю.

6. Измерение напряжения прикосновения (в электроустановках, выполненных по нормам на напряжение прикосновения).

Измерение напряжения прикосновения производится при присоединенных естественных заземлителях.

Напряжение прикосновения измеряется в контрольных точках, в которых эти значения определены расчетом при проектировании (см. также 1.7.91).

1.8.40. Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ - по пп.1-3, 6, 7, 11, 13, напряжением 110 кВ и выше - в полном объеме, предусмотренном настоящим параграфом.

1. Проверка целостности и фазировки жил кабеля. Проверяются целостность и совпадение обозначений фаз подключаемых жил кабеля.

2. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

3. Испытание повышенным напряжением выпрямленного тока.

Испытательное напряжение принимается в соответствии с табл.1.8.39.

Таблица 1.8.39.

Испытательное напряжение выпрямленного тока для силовых кабелей

Кабели с бумажной изоляцией на напряжение, кВ
2 3 6 10 20 35 110 150 220 330 500
12 18 36 60 100 175 285 347 510 670 865
Кабели с пластмассовой изоляцией на напряжение, кВ Кабели с резиновой изоляцией на напряжение, кВ
1 3 6 10 110 3 6 10
5,0 15 36 60 285 6 12 20
  1. ? Испытания выпрямленным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных на воздухе, не производятся.

Для кабелей на напряжение до 35 кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения составляет 10 мин.

Для кабелей с резиновой изоляцией на напряжение 3-10 кВ длительность приложения полного испытательного напряжения составляет 5 мин. Кабели с резиновой изоляцией на напряжение до 1 кВ испытаниям повышенным напряжением не подвергаются.

Для кабелей на напряжение 110-500 кВ длительность приложения полного испытательного напряжения составляет 15 мин.

Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в табл.1.8.40. Абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытания ток утечки должен уменьшаться. Если не происходит уменьшения значения тока утечки, а также при его увеличении или нестабильности тока испытание производить до выявления дефекта, но не более чем 15 мин.

Таблица 1.8.40.

Токи утечки и коэффициенты асимметрии для силовых кабелей

Кабели напряжением, кВ Испытательное напряжение, кВ Допустимые значения токов утечки, мА Допустимые значения коэффициента асимметрии (Imax/Imin)
6 36 0.2 8
10 60 0.5 8
20 100 1.5 10
35 175 2.5 10
110 285 Не нормируется Не нормируется
150 347 То же То же
220 610 " "
330 670 " "
500 865 " "

При смешанной прокладке кабелей в качестве испытательного напряжения для всей кабельной линии принимать наименьшее из испытательных напряжений по табл.1.8.39.

4. Испытание напряжением переменного тока частоты 50 Гц.

Такое испытание допускается для кабельных линий на напряжение 110-500 кВ взамен испытания выпрямленным напряжением.

Испытание производится напряжением (1,00-1,73)Uном.. Допускается производить испытания путем включения кабельной линии на номинальное напряжение Uном.. Длительность испытания - согласно указаниям завода-изготовителя.

5. Определение активного сопротивления жил. Производится для линий 20 кВ и выше. Активное сопротивление жил кабельной линии постоянному току, приведенное к 1 мм сечения, 1 м длины и температуре +20 °С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы. Измеренное сопротивление (приведенное к удельному значению) может отличаться от указанных значений не более чем на 5%.

6. Определение электрической рабочей емкости жил.

Производится для линий 20 кВ и выше. Измеренная емкость не должна отличаться от результатов заводских испытаний более чем на 5%.

7. Проверка защиты от блуждающих токов.

Производится проверка действия установленных катодных защит.

8. Испытание на наличие нерастворенного воздуха (пропиточное испытание).

Производится для маслонаполненных кабельных линий 110-500 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1%.

9. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.

Производится для маслонаполненных кабельных линий 110-500 кВ.

10. Проверка антикоррозийных защит.

При приемке линий в эксплуатацию и в процессе эксплуатации проверяется работа антикоррозионных защит для:

- кабелей с металлической оболочкой, проложенных в грунтах со средней и низкой коррозионной активностью (удельное сопротивление грунта выше 20 Ом/м), при среднесуточной плотности тока утечки в землю выше 0,15 мА/дм2;

- кабелей с металлической оболочкой, проложенных в грунтах с высокой коррозионной активностью (удельное сопротивление грунта менее 20 Ом/м) при любой среднесуточной плотности тока в землю;

- кабелей с незащищенной оболочкой и разрушенными броней и защитными покровами;

- стального трубопровода кабелей высокого давления независимо от агрессивности грунта и видов изоляционных покрытий.

При проверке измеряются потенциалы и токи в оболочках кабелей и параметры электрозащиты (ток и напряжение катодной станции, ток дренажа) в соответствии с руководящими указаниями по электрохимической защите подземных энергетических сооружений от коррозии.

Оценку коррозионной активности грунтов и естественных вод следует производить в соответствии с требованиями ГОСТ 9.602-89.

11. Определение характеристик масла и изоляционной жидкости.

Определение производится для всех элементов маслонаполненных кабельных линий на напряжение 110-500 кВ и для концевых муфт (вводов в трансформаторы и КРУЭ) кабелей с пластмассовой изоляцией на напряжение 110 кВ.

Пробы масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС должны удовлетворять требованиям норм табл.1.8.41 и 1.8.42.

Таблица 1.8.41.

Нормы на показатели качества масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС

Показатель качества масла Для вновь вводимой линии
С-220, 5РА МН-3, МН-4 ПМС
Пробивное напряжение в стандартном сосуде, кВ, не менее 45 45 35
Степень дегазации (растворенный газ), не более 0,5 0,1 -

Примечание. Испытания масел, не указанных в табл.1.8.39, производить в соответствии с требованием изготовителя.

Таблица 1.8.42.

Тангенс угла диэлектрических потерь масла и изоляционной жидкости (при 100, %, не более, для кабелей на напряжение, кВ)

110 150-220 330-500
0,5/0,8 0,5/0,8[1] 0,5/-
  1. ? В числителе указано значение для масел марок С-220, в знаменателе - для МН-3, МН-4 и ПМС.

Если значения электрической прочности и степени дегазации масла МН-4 соответствуют нормам, а значения tg ?, измеренные по методике ГОСТ 6581-75, превышают указанные в табл.1.8.42, пробу масла дополнительно выдерживают при температуре 100 °С в течение 2 ч, периодически измеряя tg ?. При уменьшении значения tg ? проба масла выдерживается при температуре 100 °С до получения установившегося значения, которое принимается за контрольное значение.

12. Измерение сопротивления заземления.

Производится на линиях всех напряжений для концевых заделок, а на линиях 110-500 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.

1.8.41.Воздушные линии электропередачи напряжением выше 1кВ

1. Проверка изоляторов.Производится внешним осмотром.

2. Проверка соединений проводов.Производится согласно 1.8.27.

3. Измерение сопротивления заземления опор, их оттяжек и тросов.

4. Производится в соответствии с 1.8.39 и указаниями главы 2.4.

2.1.15. В стальных и других механических прочных трубах, рукавах, коробах, лотках и замкнутых каналах строительных конструкций зданий допускается совместная прокладка проводов и кабелей (за исключением взаиморезервируемых):

1. Всех цепей одного агрегата.

2. Силовых и контрольных цепей нескольких машин, панелей, щитов, пультов и т. п., связанных технологическим процессом.

3. Цепей, питающих сложный светильник.

4. Цепей нескольких групп одного вида освещения (рабочего или аварийного) с общим числом проводов в трубе не более восьми.

5. Осветительных цепей до 42 В с цепями выше 42 В при условии заключения проводов цепей до 42 В в отдельную изоляционную трубу.

2.3.25. Выбор способа прокладки.При выборе способов прокладки силовых кабельных линий до 35 кВ необходимо руководствоваться следующим:

1. При прокладке кабелей в земле рекомендуется в одной траншее прокладывать не более шести силовых кабелей. При большем количестве кабелей рекомендуется прокладывать их в отдельных траншеях с расстоянием между группами кабелей не менее 0,5 м или в каналах, туннелях, по эстакадам и в галереях.

2. Прокладка кабелей в туннелях, по эстакадам и в галереях рекомендуется при количестве силовых кабелей, идущих в одном направлении, более 20.

3. Прокладка кабелей в блоках применяется в условиях большой стесненности по трассе, в местах пересечений с железнодорожными путями и проездами, при вероятности разлива металла и т. п.

4. При выборе способов прокладки кабелей по территориям городов должны учитываться первоначальные капитальные затраты и затраты, связанные с производством эксплуатационно-ремонтных работ, а также удобство и экономичность обслуживания сооружений.

2.3.108. В местах, где изменяется направление трассы кабельных линий, проложенных в блоках, и в местах перехода кабелей и кабельных блоков в землю должны сооружаться кабельные колодцы, обеспечивающие удобную протяжку кабелей и удаление их из блоков. Такие колодцы должны сооружаться также и на прямолинейных участках трассы на расстоянии один от другого, определяемом предельно допустимым тяжением кабелей. При числе кабелей до 10 и напряжении не выше 35 кВ переход кабелей из блоков в землю допускается осуществлять без кабельных колодцев. При этом места выхода кабелей из блоков должны быть заделаны водонепроницаемым материалом.

2.3.113. Кабельные этажи, туннели, галереи, эстакады и шахты должны быть отделены от других помещений и соседних кабельных сооружений несгораемыми перегородками и перекрытиями с пределом огнестойкости не менее 0,75 ч. Такими же перегородками протяженные туннели должны разделяться на отсеки длиной не более 150 м при наличии силовых и контрольных кабелей и не более 100 м при наличии маслонаполненных кабелей. Площадь каждого отсека двойного пола должна быть не более 600 м2.

Двери в кабельных сооружениях и перегородках с пределом огнестойкости 0,75 ч должны иметь предел огнестойкости не менее 0,75 ч в электроустановках, перечисленных в 2.3.76, и 0,6 ч в остальных электроустановках.

Выходы из кабельных сооружений должны предусматриваться наружу или в помещения с производствами категорий Г и Д. Количество и расположение выходов из кабельных сооружений должно определяться, исходя из местных условий, но их должно быть не менее двух. При длине кабельного сооружения не более 25 м допускается иметь один выход.

Двери кабельных сооружений должны быть самозакрывающимися, с уплотненными притворами. Выходные двери из кабельных сооружений должны открываться наружу и должны иметь замки, отпираемые из кабельных сооружений без ключа, а двери между отсеками должны открываться по направлению ближайшего выхода и оборудоваться устройствами, поддерживающими их в закрытом положении.

Проходные кабельные эстакады с мостиками обслуживания должны иметь входы с лестницами. Расстояние между входами должно быть не более 150 м. Расстояние от торца эстакады до входа на нее не должно превышать 25 м.

Входы должны иметь двери, предотвращающие свободный доступ на эстакады лицам, не связанным с обслуживанием кабельного хозяйства. Двери должны иметь самозапирающиеся замки, открываемые без ключа с внутренней стороны эстакады.

Расстояние между входами в кабельную галерею при прокладке в ней кабелей не выше 35 кВ должно быть не более 150 м, а при прокладке маслонаполненных кабелей - не более 120 м.

Наружные кабельные эстакады и галереи должны иметь основные несущие строительные конструкции (колонны, балки) из железобетона с пределом огнестойкости не менее 0,75 ч или из стального проката с пределом огнестойкости не менее 0,25 ч.

Несущие конструкции зданий и сооружений, которые могут опасно деформироваться или снизить механическую прочность при горении групп (потоков) кабелей, проложенных вблизи этих конструкций на наружных кабельных эстакадах и галереях, должны иметь защиту, обеспечивающую предел огнестойкости защищаемых конструкций не менее 0,75 ч.

Кабельные галереи должны делиться на отсеки несгораемыми противопожарными перегородками с пределом огнестойкости не менее 0,75 ч. Длина отсеков галерей должна быть не более 150 м при прокладке в них кабелей до 35 кВ и не более 120 м при прокладке маслонаполненных кабелей. На наружные кабельные галереи, закрытые частично, указанные требования не распространяются.

Кабельные каналы и двойные полы в распределительных устройствах и помещениях должны перекрываться съемными несгораемыми плитами. В электромашинных и тому подобных помещениях каналы рекомендуется перекрывать рифленой сталью, а в помещениях щитов управления с паркетными полами - деревянными щитами с паркетом, защищенными снизу асбестом и по асбесту жестью. Перекрытие каналов и двойных полов должно быть рассчитано на передвижение по нему соответствующего оборудования.

2.4.50. Опоры.На ВЛ могут применяться опоры из различного материала.

Для ВЛ следует применять следующие типы опор:

1) промежуточные, устанавливаемые на прямых участках трассы ВЛ. Эти опоры в нормальных режимах работы не должны воспринимать усилий, направленных вдоль ВЛ;

2) анкерные, устанавливаемые для ограничения анкерного пролета, а также в местах изменения числа, марок и сечений проводов ВЛ. Эти опоры должны воспринимать в нормальных режимах работы усилия от разности тяжения проводов, направленные вдоль ВЛ;

3) угловые, устанавливаемые в местах изменения направления трассы ВЛ. Эти опоры при нормальных режимах работы должны воспринимать результирующую нагрузку от тяжения проводов смежных пролетов. Угловые опоры могут быть промежуточными и анкерного типа;

4) концевые, устанавливаемые в начале и конце ВЛ, а также в местах, ограничивающих кабельные вставки. Они являются опорами анкерного типа и должны воспринимать в нормальных режимах работы ВЛ одностороннее тяжение всех проводов.

Опоры, на которых выполняются ответвления от ВЛ, называются ответвительными; опоры, на которых выполняется пересечение ВЛ разных направлений или пересечение ВЛ с инженерными сооружениями, - перекрестными. Эти опоры могут быть всех указанных типов.

6.1.3. Питающая осветительная сеть - сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ.

6.1.8. Каскадная система управления наружным освещением - система, осуществляющая последовательное включение (отключение) участков групповой сети наружного освещения.

6.1.12. Для аварийного освещения рекомендуется применять светильники с лампами накаливания или люминесцентными.

Разрядные лампы высокого давления допускается использовать при обеспечении их мгновенного зажигания и перезажигания.

6.1.14. В помещениях с повышенной опасностью и особо опасных при высоте установки светильников общего освещения над полом или площадкой обслуживания менее 2,5 м применение светильников класса защиты 0 запрещается, необходимо применять светильники класса защиты 2 или 3. Допускается использование светильников класса защиты 1, в этом случае цепь должна быть защищена устройством защитного отключения (УЗО) с током срабатывания до 30 мА.

Указанные требования не распространяются на светильники, обслуживаемые с кранов. При этом расстояние от светильников до настила моста крана должно быть не менее 1,8 м или светильники должны быть подвешены не ниже нижнего пояса ферм перекрытия, а обслуживание этих светильников с кранов должно выполняться с соблюдением требований техники безопасности.

6.1.17.Для питания переносных светильников в помещениях с повышенной опасностью и особо опасных должно применяться напряжение не выше 50 В.

При наличии особо неблагоприятных условий, а именно когда опасность поражения электрическим током усугубляется теснотой, неудобным положением работающего, соприкосновением с большими металлическими, хорошо заземленными поверхностями (например, работа в котлах), и в наружных установках для питания ручных светильников должно применяться напряжение не выше 12 В.

Переносные светильники, предназначенные для подвешивания, настольные, напольные и т.п. приравниваются при выборе напряжения к стационарным светильникам местного стационарного освещения (п. 6.1.16).

Для переносных светильников, устанавливаемых на переставных стойках на высоте 2,5 м и более, допускается применять напряжение до 380 В.

6.1.21. Аварийное освещение разделяется на освещение безопасности и эвакуационное.

Освещение безопасности предназначено для продолжения работы при аварийном отключении рабочего освещения.

Светильники рабочего освещения и светильники освещения безопасности в производственных и общественных зданиях и на открытых пространствах должны питаться от независимых источников.

6.2.7. При использовании шинопроводов в качестве линий питающей осветительной сети вместо групповых щитков могут применяться присоединяемые к шинопроводу отдельные аппараты защиты и управления для питания групп светильников. При этом должен быть обеспечен удобный и безопасный доступ к указанным аппаратам.

6.6.2. Светильники, обслуживаемые со стремянок или приставных лестниц, должны устанавливаться на высоте не более 5 м (до низа светильника) над уровнем пола. При этом расположение светильников над крупным оборудованием, приямками и в других местах, где невозможна установка лестниц или стремянок, не допускается.

6.6.5. Во взрывоопасных зонах все стационарно установленные осветительные приборы должны быть жестко укреплены для исключения раскачивания.

При применении во взрывоопасных зонах щелевых световодов должны соблюдаться требования гл. 7.3.

Для помещений, отнесенных к пожароопасным зонам П-IIа, должны быть использованы светильники с негорючими рассеивателями в виде сплошного силикатного стекла.

6.6.30. Штепсельные розетки должны устанавливаться:

1. В производственных помещениях, как правило, на высоте 0,8-1 м; при подводе проводов сверху допускается установка на высоте до 1,5 м.

2. В административно-конторских, лабораторных, жилых и других помещениях на высоте, удобной для присоединения к ним электрических приборов, в зависимости от назначения помещений и оформления интерьера, но не выше 1 м. Допускается установка штепсельных розеток в (на) специально приспособленных для этого плинтусах, выполненных из негорючих материалов.

3. В школах и детских учреждениях (в помещениях для пребывания детей) нa высоте 1,8 м.

7.1.11. Распределительная сеть - сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков.

7.1.15. В спальных корпусах различных учреждений, в школьных и других учебных заведениях и т.п. сооружение встроенных и пристроенных подстанций не допускается.

В жилых зданиях в исключительных случаях допускается размещение встроенных и пристроенных подстанций с использованием сухих трансформаторов по согласованию с органами государственного надзора, при этом в полном объеме должны быть выполнены санитарные требования по ограничению уровня шума и вибрации в соответствии с действующими стандартами.

Устройство и размещение встроенных, пристроенных и отдельно стоящих подстанций должно выполняться в соответствии с требованиями глав разд. 4.

п.7.1.49. В зданиях при трехпроводной сети (см. п. 7.1.36) должны устанавливаться штепсельные розетки на ток не менее 10 А с защитным контактом.

Штепсельные розетки, устанавливаемые в квартирах, жилых комнатах общежитий, а также в помещениях для пребывания детей в детских учреждениях (садах, яслях, школах и т.п.), должны иметь защитное устройство, автоматически закрывающее гнезда штепсельной розетки при вынутой вилке.

7.4.32. В пожароопасных зонах должны применяться светильники, имеющие степень защиты не менее указанной в табл. 7.4.3.

Таблица 7.4.3.

Минимальные допустимые степени защиты светильников в зависимости от класса пожароопасной зоны

Источники света, устанавливаемые в светильниках Степень защиты светильников для пожароопасной зоны класса
П-I П-II П-IIа, а также П-II при наличии местных нижних отсосов и общеобменной вентиляции П-III
Лампы накаливания IP53 IP53 2'3 2'3
Лампы ДРЛ IP53 IP53 IP23 IP23
Люминесцентные лампы 5'3 5'3 IP23 IP23

7.4.35. Переносные светильники в пожароопасных зонах любого класса должны иметь степень защиты не менее IP54; стеклянный колпак светильника должен быть защищен металлической сеткой.

7.6.25. Кабельная линия первичной цепи переносной (передвижной) электросварочной установки от коммутационного аппарата до источника сварочного тока должна выполняться переносным гибким шланговым кабелем с алюминиевыми или медными жилами, с изоляцией и в оболочке (шланге) из нераспространяющей горение резины или пластмассы. Источник сварочного тока должен располагаться на таком расстоянии от коммутационного аппарата, при котором длина соединяющего их гибкого кабеля не превышает 15 м.